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In this paper the motion of a two-mass system with two degrees of freedom is discussed.
The masses are connected with three springs. The motion of the system is described with
a system of two coupled strong non-linear di!erential equations. For the case when the
non-linearity is of a cubic type, the analytical solution of the system is obtained. It is
a combination of a Jacobi elliptic function and a trigonometric function. An approximate
analytical method based on the Krylov}Bogolubov procedure is developed for the system
which contains small non-linearities. Two examples are considered: the case when all the
three sti!nesses are non-linear and the case when small damping acts. The analytical
solutions are compared with numerical ones. They show a good agreement.
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1. INTRODUCTION

The dynamics of the two-mass system with two degrees of freedom has been widely
discussed for a long time. Usually, it is assumed that the motion is described with a system
of two coupled linear di!erential equations and the solution of the equations is given in the
closed analytical form. Vakakis and Rand [1, 2] extended the investigations. They assumed
that the two-degree-of-freedom system is non-linear and analyzed its global dynamics. Two
cases are discussed: one, when it is assumed that the non-linearities in the system are small
[1], and the second, when only the non-linearity of the sti!ness connecting the two moving
masses is small [2]. For these cases, an approximate analytical solution is developed, based
on the linear solution of the system of di!erential equations. In paper [3], a special case of
the two-mass system is considered. The masses are connected with a strong non-linear
sti!ness and have no connection with the "xed part. The motion is described with a system
of two coupled ordinary second order di!erential equations with strong cubic non-linearity.
The closed-form analytical solution is obtained by applying Jacobi elliptical functions.

In this paper an extension of the previous cases is undertaken. It is assumed that the two
masses are connected to each other with a strong non-linear sti!ness and to the "xed parts
with linear or weak non-linear elastic elements. This physical model corresponds to many
machine}stand}foundation systems. The mathematical model of such a two-degree-of-
freedom system is a system of two coupled non-linear di!erential equations. Using the
combination of Jacobi elliptical functions [4}6] and harmonic functions the exact general
analytical solution of the system is obtained. For the case when the system contains not only
strong but also some small non-linearities, the approximate analytical solution is developed
based on the well-known Krylov}Bogolubov method for elliptical and trigonometrical
functions [7, 8]. Two examples are considered: (1) a system which is under the in#uence of
0022-460X/01/420279#14 $35.00/0 ( 2001 Academic Press



Figure 1. The model of the two-mass system.
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non-linear sti!ness; (2) a small non-linear damping force acts. The analytical solutions are
compared with numerical ones, obtained by applying the Runge}Kutta method.

2. THE MODEL OF THE SYSTEM

The model of the two-mass system is shown in Figure 1. Two equal masses m are
connected with the "xed bodies with sti!ness k

1
. The connection between the two bodies is

a spring with non-linear properties. The linear coe$cient of elasticity of the spring is k
2

and
of the cubic non-linearity is k

3
. The system has two degrees of freedom. The generalized

co-ordinates are x and y. The mathematical model of the system is

mxK#k
1
x#k

2
(x!y)#k

3
(x!y)3"e f

1
(x, xR , y, yR ),

myK#k
1
y#k

2
(y!x)#k

3
(y!x)3"e f

2
(x, xR , y, yR ), (1)

where e f
i
are small non-linearities (i"1, 2). Introducing the new variables

X"x!y, >"x#y (2)

and the notation suggested by Coppola and Rand [7], equations (1) are transformed into
a system of two di!erential equations

XG #aX#bX3"(e/m) ( f
1
!f

2
), >G#X2>"(e/m) ( f

1
#f

2
), (3)

where

a"(k
1
#2k

2
)/m, b"2k

3
/m, X2"k

1
/m (4)

and

f
i
,f

i
((X#>)/2, (XQ #>Q )/2, (>!X)/2, (>Q !XQ )/2), i"1, 2. (5)

Di!erential equations (3) are coupled only with the small non-linear terms, i.e., with the
terms with parameter e.
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3. GENERAL SOLUTION OF THE SYSTEM OF TWO STRONG
NON-LINEAR DIFFERENTIAL EQUATIONS

For e"0, the di!erential equations of motion are

mxK#k
1
x#k

2
(x!y)#k

3
(x!y)3"0,

myK#k
1
y#k

2
(y!x)#k

3
(y!x)3"0 (6)

or using variables (2)

mXG#(k
1
#2k

2
)X#2k

3
X3"0, m>G#k

1
>"0. (7)

Equations (7) represent a system of two separated di!erential equations which can be solved
independently. The "rst equation is with strong cubic non-linearity and the second is linear.
The general solution of the "rst equation is after reference [8],

X"A cn(ut#h, k2), (8)

where cn is the Jacobi elliptical function [4] with the frequency u and modulus k

u"Ja#bA2"J(k
1
#2k

2
#2k

3
A2)/m, (9)

k2"bA2/2(a#bA2)"k
3
A2/(k

1
#2k

2
#2k

3
A2) (10)

A and h are arbitrary parameters. The frequency u and the modulus of the Jacobi function
k depend on the initial amplitude A. The modulus of the function is independent of the mass
of the bodies.

The general solution of linear equation (7) is

>"B cos(Xt#/), (11)

where B and / are unknown parameters and the frequency of the linear oscillator is

X"Jk
1
/m . (12)

Substituting equations (8) and (11) into equation (2) the general solution of the system of
equations (6) is

x"1
2
A cn(ut#h, k2)#1

2
B cos(Xt#/),

y"1
2
B cos(Xt#/)!1

2
A cn(ut#h, k2). (13)

The values of A, B, h and / in equation (13) have to be determined according to the initial
conditions.

3.1. THE INFLUENCE OF THE INITIAL CONDITIONS

Substituting the initial conditions

x (0)"x
0
, y(0)"y

0
, xR (0)"xR

0
, yR (0)"yR

0
(14)
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into equation (13), the following system of equations is obtained:

x
0
"1

2
A cn(h, k2)#1

2
B cos /, y

0
"1

2
B cos /!1

2
A cn(h, k2),

xR
0
"(u/2) A sn(h, k2) dn(h, k2)!(X/2) B sin /,

yR
0
"(u/2) A sn(h, k2) dn(h, k2)!(X/2) B sin /, (15)

where sn and dn are also Jacobi elliptical functions [4]. Solving the system of equations (15)

B"J(x
0
#y

0
)2#(xR

0
#yR

0
)2/X2 ,

/"arctan[!(xR
0
#yR

0
)/X(x

0
#y

0
)] ,

A"J(!a#Ja2#2ab (x
0
!y

0
)2#b2(x

0
!y

0
)4#b (yR

0
!xR

0
)2)/b

and the value of a is obtained from the equation

sc(a, k2) dc(h, k2)"
yR
0
!xR

0
(x

0
!y

0
)u

"

(yR
0
!xR

0
)Jm

(x
0
!y

0
)Jk

1
#2k

2
#2k

3
A2

. (16)

Assume some special cases of initial conditions.

1. If the motion starts without initial velocity, i.e., xR
0
"0, yR

0
"0, coe$cients (16) which

depend on the initial conditions are

A"x
0
!y

0
, B"x

0
#y

0
, h"0, /"0. (17)

Substituting equation (16) into equation (13) the general solution of system (6) is

x"
x
0
!y

0
2

cnAtJa#b (x
0
!y

0
)2,

b (x
0
!y

0
)2

2[a#b(x
0
!y

0
)2]B#

x
0
#y

0
2

cos(Xt),

y"
x
0
#y

0
2

cos(Xt)!
x
0
!y

0
2

cnAtJa#b (x
0
!y

0
)2,

b (x
0
!y

0
)2

2[a#b(x
0
!y

0
)2]B , (18)

i.e., using parameters (4) it can be expressed as

x"
x
0
!y

0
2

cnAtS
k
1
#2k

2
#2k

3
(x

0
!y

0
)2

m
,

k
3
(x

0
!y

0
)2

k
1
#2k

2
#2k

3
(x

0
!y

0
)2B#

x
0
#y

0
2

cosAtS
k
1

mB ,

y"
x
0
#y

0
2

cosAtS
k
1

mB
!

x
0
!y

0
2

cnAtS
k
1
#2k

2
#2k

3
(x

0
!y

0
)2

m
,

k
3
(x

0
!y

0
)2

k
1
#2k

2
#2k

3
(x

0
!y

0
)2B .
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2. For the case when the initial position of the system is zero, i.e., x
0
"0 and y

0
"0, the

initial coe$cients are /"n/2 and h"K (k2) where K(k2) is the total elliptical integral of
the "rst kind [5].

By assuming the case when the parameters of the system are

m"1, k
1
"k

2
"k

3
"1

with initial conditions

x
0
"1, y

0
"0)5, xR

0
"yR

0
"0. (19)

The system of equations

xK#x#(x!y)#(x!y)3"0, yK#y#(y!x)#(y!x)3"0 (20)

with initial conditions (19) produces the closed-form analytical solution

x"1
4
cn(tJ7/2, 1/14)#3

4
cos t, y"3

4
cos t!1

4
cn(tJ7/2, 1/14). (21)

In Figure 2(a) and 2(b), the x!t and y!t diagrams are plotted. The motion of both masses
is periodical.

3.2. LINEAR CASE

For the case when the system is linear, i.e.,

k
3
"0, (22)

the di!erential equations of motion are

mxK#k
1
x#k

2
(x!y)"0, myK#k

1
y#k

2
(y!x)"0. (23)

Substituting equation (22) into equation (10), the modulus of the elliptical function cn is zero
(k2"0). The elliptical function cn with the modulus zero transforms into the harmonic
function cosines, and the general solution of the system is after equation (13)

x"(A/2) cos(ut#h)#(B/2) cos(Xt#/),

y"(B/2) cos(Xt#/)!(A/2) cos(ut#h). (24)

This solution is well known in the theory of linear vibrations.

3.3. SYSTEM WITH SOFT NON-LINEARITY

For the case when the non-linearity is soft and k
3

is negative (k
3
(0), the di!erential

equations of motion are

mxK#k
1
x#k

2
(x!y)!k

3
(x!y)3"0,

myK#k
1
y#k

2
(y!x)!k

3
(y!x)3"0. (25)



Figure 2. The x}t diagrams (a) and y}t diagram (b) for the system with strong cubic non-linearity.
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The general solution has form (13) where modulus (10) and frequency (9) of the Jacobi
elliptical function are

k*2"k
3
A2/(k

1
#2k

2
!2k

3
A2)(0, (26)

u*2"(k
1
#2k

2
!2k

3
A2)/m'0. (27)

The connection between the elliptical function cn with negative modulus and cd with
positive modulus is according to reference [5]

cnAu*t#a,!
k
3
A2

k
1
#2k

2
!2k

3
A2B,cdC(u*t#a)S

k
1
#2k

2
!k

3
A2

k
1
#2k

2
!2k

3
A2

,
k
3
A2

k
1
#2k

2
!k

3
A2D .

The general solution of system (25) is

x"1
2
A cd(u, k**2)#1

2
B cos(Xt#/), y"1

2
B cos(Xt#/)!1

2
A cd(u, k**2), (28)
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where

u"(u*t#h)J(k
1
#2k

2
!k

3
A2)/(k

1
#2k

2
!2k

3
A2) (29)

k**2"k
3
A2/(k

1
#2k

2
!k

3
A2) . (30)

4. APPROXIMATE SOLUTION OF THE SYSTEM

In this section, the approximate analytical solution of the system of di!erential equations
(1) is obtained. It is based on the perturbation of solutions (13) of the system of two strong
non-linear di!erential equations (6). The method of variable amplitude and phase
(Krylov}Bogolubov) is extended for the solution which is a combination of elliptical and
trigonometrical function. In the previous methods the Krylov}Bogolubov method was
applied for the solutions which contain only elliptical functions or only trigonometrical
functions. Now, it is the combination of both.

The trial solutions of equations (2) are assumed in the form of the generating solutions (8)
and (11), as it is the usual procedure in the Krylov}Bogolubov method. The trial solution
has the form

X"A(t) cn[t
1
(t), k2(t)],A(t) cn, >"B (t) cost

2
(t), (31, 32)

where A, B, u, /, h and k are time dependent,

t
2
(t)"Xt#/ (t) (33)

and

t
1
(t)"P

t

u(t) dt#h (t) (34)

as suggested by Yuste and Bejarano [8], or

t
1
(t)"4K (k2)u (t) (35)

as suggested by Coppola and Rand [7]. 4K(k2)u (t) is the argument of the elliptical function
which leads to the periodic variational equations that can be averaged. The phase equation
h(t) is not periodical one, and the averaging procedure cannot be applied for the
non-periodical function. In this paper, the procedure suggested by Coppola and Rand [7] is
applied.

The assumption in the Krylov}Bogolubov method is that the modulus}amplitude and
frequency}amplitude relationships must be the same for the trial solution as for the
generating solution and they are

u2(t)"a#bA2(t), k2 (t)"bA2(t)/(a#bA2(t)). (36)

The constraint in the Krylov}Bogolubov method is that the time derivative of the trial
solution must have the same form as the time derivative of the generating solution. For
equations (31) and (32) it is

XQ "A(t)u cnt1"AQ (cn#4uA cnt1K@k@#Ak@ cn
k
)#4KAuR cnt1 ,

>Q "!B (t)X sin t
2
, (37)
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where ( ) ),d/dt, ( @),d/dA, cnt1 is the derivative of elliptical function with respect to the
argument, and cn

k
the derivative of elliptical function with respect to the modulus k. The

task of "nding the solution X and > is transformed into "nding six functions so that
expressions (31) and (32) satisfy equations (2). Substituting the trial solutions into equations (2)
and taking the aforementioned constraints the following four "rst order di!erential
equations are obtained:

AQ "(e/mu) ( f
1
!f

2
) cnt1 ,

uR "
u
4K

#

e
m

( f
1
!f

2
)

1

4KAu Ccn!
1!2k2

1!k2
(Z cnt1#k2 cn(1!cn2)D ,

BQ "!(e/mX) ( f
1
#f

2
) sin t

2
, /Q "!(e/mXb) ( f

1
#f

2
) cos t

2
, (38)

where K is the complete elliptical integral of the "rst kind and Z the Jacobian Zeta function
[5]

Z"Z(4Ku, k)"E (4Ku, k)!4uE (39)

and

f
i
,f

i
M1
2
[A cn(t

1
, k2)#B cost

2
] , 1

2
[Au cnt1!BX sin t

2
],

1
2
[B cos t

2
!A cn(t

1
, k2)], 1

2
[!Au cnt1!BX sin t

2
]N, i"1, 2. (40)

Using reference [4] it is

cnt1"!sn dn,

cn
k
"!(sn dn/k(1!k2)) [(1!k2)4Ku

!E(4Ku, k)]!(k/(1!k2)) cn(1!cn2), (41)

where E (4Ku, k) is the Legendre's incomplete elliptical integral of the second kind and E the
complete elliptical integral of the second kind [5]. Solving equations (38) one obtains the
approximate solutions of equations (1)

x"1
2
A(t) cn[t

1
(t), k2(t)]#1

2
B (t) cos t

2
(t),

y"1
2
B (t) cost

2
(t)!1

2
A(t) cn[t

1
(t), k2(t)]. (42)

To "nd the solution of equations (38) is not an easy task. Usually, the averaging procedure is
introduced to simplify the problem. The averaged equations (38) are

AQ "!

e
mu

1

2n
1

4K P
4K

0
CP

2n

0

( f
1
!f

2
) cnt1 dt

1Ddt
2
,

uR "
u
4K

#

e
m

1

2n
1

4K P
4K

0
CP

2n

0

( f
1
!f

2
)

1

4KAu

]Ccn!
1!2k2

1!k2
(Z cnt1#k2 cn(1!cn2)D dt

1D dt
2
,



Figure 3. The model of the two-mass system with three non-linear springs.
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BQ "!

e
mX

1

2n
1

4K P
4K

0
CP

2n

0

( f
1
#f

2
) sin t

2
dt

1D dt
2
,

/Q "!

e
mXB

1

2n
1

4K P
4K

0
CP

2n

0

( f
1
#f

2
) cos t

2
dt

1D dt
2
. (43)

The procedure of averaging of the elliptical functions is widely analyzed in papers [7, 8].
Solving averaged equations (43) the A (t), u (t), B (t) and / (t) are obtained. Substituting
these functions into equation (42) the approximate solutions of equations (1) are
obtained.

4.1. THE SYSTEM WITH NON-LINEAR STIFFNESS

Consider the case when the sti!nesses are with small non-linearities and the di!erential
equation of motion is

mxK#(k
1
x#ek

4
x3)#k

2
(x!y)#k

3
(x!y)3"0,

myK#(k
1
y#ek

4
y3)#k

2
(y!x)#k

3
(y!x)3"0, (44)

i.e.,

XG#aX#bX3"!(ek
4
/4m)X (X2#3>2),

>G#X2>"(ek
4
/4m)> (>2#3X2). (45)

The model of the system is shown in Figure 3. The approximate solutions of equations (45)
are according to equation (31), (32) and (43)

X"A
0
cn[Q

1
t#u

0
, k2(A

0
)], >"B

0
cos[(X#Q

2
) t#/

0
], (46, 47)

where

A
0
"const, B

0
"const,

X"Jk
1
/m , Q

2
"(3ek

4
/8mX) [A2

0
Scn2T#B2

0
/4],
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Q
1
"u!(ek

4
/4mu) (1/(1!k2))

]MA2
0
[(1!2k2#2k4)Scn4T#(1!2k2)k2Scn6T#(1!2k2)SZ sn dn cn3T]

#3B2
0
Scos2 t

2
T[(1!2k2#2k4)Scn2T

#(1!2k2)k2Scn4T#(1!2k2)SZ sn dn cnT]N,

u,u(A
0
)"Ja#bA2

0
"J(k

1
#2k

2
#2k

3
A2

0
)/m ,

k2,k2 (A
0
)"

bA2
0

2(a#bA2
0
)
"

k
3
A2

0
k
1
#2k

2
#2k

3
A2

0

.

The averaged Jacobi elliptical functions are (see reference [5])

Scos2 t
2
T"

1

2n P
2n

0

cos2 t
2
dt

2
"1

2
,

Scos4 t
2
T"

1

2n P
2n

0

cos4 t
2
dt

2
"3

8
,

Scn2T"
1

4K P
4K

0

cn2[t
1
(t), k2] dt

1
"

1

k2 C
E

K
!(1!k2)D ,

Scn4T"
1

4K P
4K

0

cn4[t
1
(t), k2] dt

1
"

1

3k4
[2(2k2!1)

E

K
#(2!3k2) (1!k2)],

Scn6T"
1

4K P
4K

0

cn6[t
1
(t), k2] dt

1

"(1/15k6) [(23k4!23k2#8) (E/K)#15k6!34k4#27k2!8].

Substituting equations (46) and (47) into equations (2) the general solutions are

x
a
"1

2
A

0
cn[Q

1
t#u

0
, k2(A

0
)]#1

2
B
0
cos(Q

2
t#/

0
),

y
a
"1

2
B
0
cos(Q

2
t#/

0
)!1

2
A

0
cn[Q

1
t#u

0
, k2 (A

0
)], (48)

where A
0
, B

0
, /

0
, u

0
are constant values dependent on initial conditions. For the

parameter values k
1
"k

2
"k

3
"k

4
"m"1, e"0)1 and initial conditions A

0
"0)5,

B
0
"1)5, /

0
"0, u

0
"0, i.e., x

0
"1, xR

0
"0, y

0
"0)5, yR

0
"0 the history}time diagrams

for both masses are plotted. In Figure 4(a), the x
a
}t diagram obtained analytically

(see equations (48)) and the diagram obtained by numerically solving equations (44)
using the Runge}Kutta method, the x

n
}t diagram, are plotted. In Figure 4(b), the

y
a
}t diagram obtained analytically and the numerical y

n
}t diagram are plotted. The

motions are periodical. The di!erence between analytical and numerical solutions is
negligible.



Figure 4. The x}t diagrams (a) and y}t diagram (b) for the system with three non-linear springs.
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4.2. THE SYSTEM WITH SMALL DAMPING

Consider the case when the small damping exists. The model of the system is shown in
Figure 5. The mathematical model of the system is

xK#k
1
x#k

2
(x!y)#k

3
(x!y)3"!ed xR ,

yK#k
1
y#k

2
(y!x)#k

3
(y!x)3"!ed yR (49)

or introducing variables (2)

XG#aX#bX3"!(ed/m) ((XQ #>Q )/2),

>G#X2>"!(ed/m) ((>Q !XQ )/2). (50)

Equations (49) and (50) are solved analytically and numerically. For the initial conditions
t"0, A

0
"0)5, B

0
"1)5, u

0
"0, /

0
"0, the analytical solutions of equations (49) have



Figure 5. The model of the two-mass system with damping.

Figure 6. The x}t diagrams (a) and y}t diagrams (b) for the system with damping.
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form (13) and they are

x
a
"A(t) cn[4u(t)K, k2]#B

0
e~edt@2m,

y
a
"B

0
e~edt@2m!A(t) cn[4u(t)K, k2], (51)
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where A(t) and u (t) are the solutions of the "rst order di!erential equations

AQ "!

edA

mu
1

4K P
4K

0

cn2t1 dt
1
,

uR "(u/4K)#(ed/m) (1/4K) P
4K

0

cnt1
4Ku Ccn!

1!2k2

1!k2
(Zcnt1#k2cn(1!cn2))D dt

1
. (52)

For the parameter values k
1
"k

2
"k

3
"1, m"1, ed"0)1, analytical solutions (51) are

compared with numerical one (x
n
, y

n
) which are obtained by using the Runge}Kutta

procedure. In Figure 6(a), the x
a
}t and x

n
}t diagrams are plotted. In Figure 6(b), the

time}history diagrams y
a
}t and y

n
}t are compared. The initial conditions are t"0, x

0
"1,

xR
0
"0, y

0
"0)5, yR

0
"0. The motion has a tendency for decrease. Comparing the analytical

and numerical solutions it can be seen that the analytical solution improves upon the
numerical one. The di!erence between the solutions increases in time.

5. CONCLUSION

It can be concluded that

1. The motion of a two-mass system connected with a strong non-linear cubic sti!ness
which is described with a system of two strong non-linear cubic di!erential equations can be
obtained in closed analytical form. The motions of the masses are periodical. The motions
are described as the combination of a Jacobi elliptical function and a trigonometrical
function.

2. An approximate method for solving coupled strong non-linear di!erential equations
with small non-linearities has been developed based on the well-known Krylov}Bogolubov
procedure.

3. The motion of the two-mass system with three non-linear sti!nesses di!ers from the
system where only the sti!ness which connects the masses is non-linear. Comparing
analytical results (13) and (48) and also Figures 2 and 4, it can be seen that the motions are
periodic but the period of vibrations di!ers for these cases: it is longer for the "rst case.

4. The approximate analytical results are in good agreement with exact numerical
solutions. It proves the correctness of the analytical procedure.
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